Computers Math. Applic. Vol. 31, No. 2, pp. 111-121, 1996

Pergamon Copyright©1996 Elsevier Science Litd
Printed in Great Britain. All rights reserved

0898.1221(95)00198-0 0898-1221/96 $15.00 + 0.00

Explicit Symmetric Runge-Kutta-Nystrom
Methods for Parallel Computers

N. H. CoNG
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
Faculty of Mathematics, Mechanics and Informatics
University of Hanoi, Thuong Dinh, Dong Da, Hanoi, Vietnam

(Received April 1994; revised and accepted May 1995)

Abstract—1In this paper, we are concerned with parallel predictor-corrector (PC) iteration of
Runge-Kutta-Nystrom (RKN) methods in P(EC)™ E mode for integrating initial value problems for
the special second-order equation y’/(t) = f(y(t)). We consider symmetric Runge-Kutta-Nystrém
{SRKN) corrector methods based on direct collocation techniques which optimize the rate of conver-
gence of the PC iteration process. The resulting PISRKN methods (parallel iterated SRKN methods)
are shown to be much more efficient when they are compared to the PC iteration process applied to
the Gauss-Legendre RKN correctors.

Keywords—Runge-Kutta-Nystrém methods, Predictor-corrector methods, Parallelism.

1. INTRODUCTION

There exists in the literature a number of explicit Runge-Kutta-Nystrém (RKN) methods for the
numerical solution of the nonstiff second-order initial-value problem (IVP)

2
DO _ 1), v =yo, Yio)=vh to<I<T, (kY

where y : R — RY, f: RN — RN, Methods up to order 10 can be found in [1-4]. In order to
exploit the potential of vector and parallel computers, several classes of predictor-corrector (PC)
methods based on correctors of RKN type have recently been considered in [5-7]. In the present
paper, we propose a class of parallel PC methods on a new class of Symmetric RKN correctors
(SRKN correctors). The new SRKN corrector method is constructed by optimizing the rate of
convergence of the PC iteration process (see Section 3.2).

Having constructed optimal SRKN correctors, we apply the highly parallel PC iteration scheme.
For a given order p, the resulting parallel iterated SRKN method (PISRKN method) has a larger
number of processors, p — 1, when compared with p/2 for the PIRKN methods proposed in {5,7}.
However, the rate of convergence of the PISRKN method is much better, so that its efficiency is
increased. This increased efficiency is shown in Sections 4.1 and 4.2 where numerical results are
presented by comparing the PISRKN methods with PIRKN methods and with sequential RKN
methods available in the literature.

These investigations were partly supported by the University of Amsterdam, National Basis Research Program
and Research Program B93-05-71.

The author is grateful to P.J. van der Houwen and B.P. Sommeijer for their help during the preparation of this
paper. He is also grateful to the referees for their useful comments.

Typeset by ApS-TEX
111

112 N. H. CONG

2. SYMMETRIC RKN METHODS

In this section, we construct the class of SRKN correctors that will be used in the parallel PC
iteration scheme. We will start with a fully implicit s-stage direct collocation-based RKN method
(see, e.g., [8]). By using the Kronecker product denoted by ®, for the system of equations (1.1),
this method assumes the form (cf, e.g., [7])

Y.=e®u,+hc@u, +h>(AQ IN)F(Y,), (2.1a)
Unp1 = U, + hul, + h2 (b7 ® IN) F(Ya.),
uy=u,+h(dT @ IN)F(Yn).
Here, A is an s-by-s matrix, Iy is the identity N-by-N matrix, b,c,d and e are s-dimensional
vectors, e is the vector with unit entries, Y,, is the s/N-dimensional stage vector with s vector
components Y,,; of dimension N corresponding to the n' step, and F(Y,) is also the sN-
dimensional vector (f(Y,;)), ¢=1,...,s. From now on, we assume that the components of the
collocation vector ¢ = (cy,...,cs)! are symmetrically distributed; that is, ¢; are symmetric with
respect to 1/2. To be more precise, let ¢;,...,cm be given and less than 1/2; then all the ¢;
greater than 1/2 are available as free parameters and defined by

(2.1b)

fors=2m+1: cpppi=1~¢ (1=12,...,m), Cmsy1=1/2,
for s =2m: Cmri=1—¢; (1=1,2,...,m).
These RKN methods will be referred to as SRKN methods.

It is known that a direct collocation-based s-stage RKN method is of at least step point order
p = s and stage order 7 = s (see [8]). These orders can be increased (beyond s) if the orthogonality

relation
/Hz—)2 ldr =0 (2.2)

is satisfied for j > 1 (cf., e.g., [8, Theorems 3.3 and 3.4; 9, p. 207]). For the SRKN methods,
condition (2.2) is satisfied for j = 1 if s is odd (see also [10]). This is readily seen by setting
=&+ 1/2, s = 2m + 1; then condition (2.2) takes the form

1/2

\ $(§)d€ =0, (2.3)

where $(£) is an odd function defined by ¢(€) = £ [T, (§+1/2~¢;)(€ —1/2+¢;). Thus we have
the following simple theorem.

THEOREM 2.1. Let p and r be the step point order and stage order, respectively, of an s-stage
SRKN method; thenp=r =sifsisevenandp=r=s+1 if s is odd. [}
This theorem leads us to restrict our considerations to the SRKN methods with an odd number
of stages. SRKN methods are not A-stable (see [8]), but their stability intervals denoted by
(—Beorr» 0) are sufficiently large for nonstiff problems (see Section 3.3).
3. PARALLEL ITERATED SRKN METHODS
Using the SRKN method (2.1) as corrector and
YO =(VeIn Y™, +weya (3.1a)
as predictor, we arrive at the following PC iteration scheme (in P(EC)™FE mode):
Y9 =e®yn +he@yn+h (A@IMF (YI), j=1,...m, (3.1b)
Yn+1 = ¥a +hy; +h? (bT ®IN) F (Yv(;m)))

(3.1¢)
Yas1=Yh +h(dT @ In)F (Y),

Runge-Kutta-Nystrém Methods 13

where V' is an s-by-s matrix and w is an s-dimensional vector, both determined by the order

conditions (see Section 3.1). Notice that the s components of dimension N of the vectors F(YY)
can be computed in parallel, provided that s processors are available. Hence, the computational
costs of (3.1) are measured by the number of sequential right-

hand side evaluations per step which
equals m + 1.

This parallel PC method (3.1) is of the same nature as the PIRKN methods (parallel iterated
RKN methods) considered in [5,7], and only differs by its predictor (3.1a) and the underlying

corrector. In analogy with the PIRKN methods, the method (3.1) will be called a PISRKN
method (parallel iterated SRKN method).

3.1. Order Conditions for the Predictor Method

The order conditions for the predictor formula (3.1a) can be derived straightforwardly using
Taylor expansions. Similar to that of the PISRK methods considered in [10], we obtain an s order
predictor if

;—![(c%—e)j —(V,w)a’] =0, a:= (cT,l)T, ji=12,...,s. (3.2)

The parameter matrix V' and vector w in (3.1a) can be determined by (3.2). In order to express V
and w explicitly in terms of ¢, we define the s-by-s and (s + 1)-by-(s + 1) matrices P and Q

P:=(e,(c+e),(c+e)?,....(c+e)), Q:= (e*,a,2%,...,2%), (3.3a)

where e* is (s + 1)-dimensional vector with unit entries. Using (3.3a), condition (3.2) can be
written in the form

P—(V,w)Q =0,

where O is an s-by-(s + 1) matrix with zero entries. Since the abscissas ¢; are assumed to be
distinct, we can write

(V,w) = PQ™*. (3.3b)

If (3.3) is satisfied, then the following order relations are obtained:

Y, - Yg’") =0 (h2m+s+1))
.
Unii = Yags = B2 (b7 @ In) | [F (Yn) = F (YI)] = 0 (a2mre7%),

Wy = Yogr = h{(dT ® In) [F(Ya) = F (Y{™)] = 0 (w2m+e+2)

Thus, we have the following theorem.

THEOREM 3.1. If the corrector method (2.1) is of order p and if V and w are defined by (3.3),
then the PISRKN method (3.1) represents an explicit method of order p™ = min(p,2m + s + 1)
requiring m + 1 sequential right-hand side evaluations per step. B

3.2. Construction of SRKN Corrector Methods

We restrict our considerations to SRKN methods with an odd number of implicit stages (s =
3,5,7,9) and we will construct SRKN correctors such that the corresponding PISRKN methods
have an optimized rate of convergence. This rate of convergence of PISRKN methods is defined
by using the model test equation 3/ = Ay, where A runs through the eigenvalue.s of the Jacobian
matrix g{; (cf., e.g., [5]). For this equation, we obtain the iteration error equation

. . 2 .
Yg’)"Yn=ZA[Yg'1)-Yn}’ z:=Ah*, j=1,...,m.

114 N. H. CoNG

Hence, with respect to the model test equation, the rate of convergence is determined by the
spectral radius p(A) of the matrix A. By requiring that p(24) < 1, we are led to the convergence
condition) .

2| < == or RP< —— .

p(4) p(A)p (:?—j—)

We shall call p(A) the convergence factor and 1/p(A) the convergence boundary of the PISRKN
method. We exploit the freedom in the choice of the collocation vector ¢ for SRKN correctors for
minimizing the convergence factor p(A4), or equivalently, for minimizing the convergence region
{z: z < 1/p(A)}. By a numerical search, we found the collocation vectors and the corresponding
convergence factors as listed in Table 1 (the specification of the parameters of the associated
SRKN corrector methods can be found in the Appendix). Table 1 also lists the convergence
factors for the Gauss-Legendre based indirect and direct PIRKN methods proposed in [7,10].
From this table, we see that the convergence factors of the PISRKN methods are substantially
smaller than those of the PIRKN methods of the same order.

Table 1. SRKN collocation points and convergence factors of PIRKN and PISRKN

(3-4)

methods.
Order c1 co c3 cq Convergence factors
Indirect PIRKN Direct PIRKN PISRKN
p=4 0.10575846 0.083 0.048 0.025
p=6 0.04282436 0.21758171 0.046 0.029 0.011
p=8 0.02294808 0.11836119 0.28107352 0.027 0.018 0.006
p=10 0.01532451 0.07956500 0.19035553 0.33824665 0.019 0.013 0.004

‘We remark that the free parameters ¢; could be chosen so that the error coefficients were as
small as possible. This may lead to other collocation vector c. As a consequence, the collocation
points found in Table 1 aim at fast convergence of the PISRKN methods.

3.3. Stability of PISRKN Methods

The stability of the PISRKN method (3.1) is investigated by again using the model test equation
y"(t) = Ay(t), where A is assumed to be negative. Applying (3.1) to the model test equation, we
obtain

Y™ = ey, +chyl, + zAY™ D = (I 4+ zA+ -+ 2™ A™ 1Y) (ey, + chyl) + 2" A™ YD)
= 2" A™VY) 4 (I - 24)" (T - 2" A™) e + 2™ A™W) v, (3.52)
+ (I —zA)"1 (I - 2™A™) chy),,
Yn4+1 =Yn + hyy'z + szY,(mm)
= 2T AMVY () + (L4 2bT (2mA™W + (I — zA)" (I — 2™ A™)e))yn (3.5b)
+(1+ 2bT(I - zA)" (I - 2™ A™) c) hy;,,
hyfpi1 = hyp +2d 7YY
= 2" dTA™VY) 4+ 2dT (2m AW + (I - 24) " (I~ 2" A7) €) yn (3.5¢)

+(1+2d"(I-2zA)" (I - 2™A™)c) hy,,.
By defining X{™ := (Y ™)) T, yn, h,) T, (3.5) leads us to the recursion

X[= Mo(2)X{™, (3.6)
Mon(2) =
Zm APV (I — 2A)"1(I — 2™ A™)e + 2™ A™w (I = 24)~Y(I — zmA™)c
2T A™Y 142b" (2 APWH(I—2zA) " (I—2mA™)e) 142bT (I-zA)"Y(I-zmA™)c | .
AT A™Y T (M ATWAH(I—2A) " (I~2mA™)e) 1+2d T (I—zA)" (I-2mA™)e

Runge-Kutta-Nystrom Methods 115

Similar to the stability considerations of block PIRK and PISRK methods (cf. {10,11]), the
(5 + 2)-by-(s + 2) matrix Mp,(z) which determines the stability of the PISRKN methods will
be called the amplification matriz, and its spectral radius p(M,,(2)) the stability function. For
finite, given m, the stability intervals of PISRKN methods are defined by

(=B(m),0):={z: p(Mm(2)) <1, z <0}.

From (3.6) we see that if z satisfies the convergence condition (3.4), then the stability function
of the PISRKN method p(M,,(z)) converges to the stability function of the SRKN corrector
method as m — oo (cf. [8]). Hence, the asymptotic stability interval of the PISRKN method
for m — oo, (—B(0), 0), contains the intersection on the negative z-axis of the stability interval
(—Bcorr, 0) of the SRKN corrector (see [8]) and its region of convergence defined by (3.4). Since
the convergence boundary of the PISRKN method 1/p(A) is much larger than the stability
boundary Beorr of the corresponding SRKN corrector, the asymptotic stability interval of the
PISRKN method coincides with the stability interval of the SRKN corrector. Table 2 lists the
stability boundaries 8(m) of the resulting PISRKN methods. We observe that these stability
boundaries are sufficiently large for nonstiff problems.

Table 2. Stability boundaries for various PISRKN methods.

Order B(1) B2) B8(3) p@4) B(8) e B(00) = Beorr
p=4 0.21 2.66 4.15 4.96 5.49 .. 9.76
p=26 0.01 0.69 3.18 7.16 10.03 . 9.86
p=28 0.00 0.19 1.47 4.44 9.18 . 39.47
p=10 0.00 0.05 0.68 2.64 6.24 . 79.65

4. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments applied to various parallel PC methods as
well as sequential methods. In order to see the efficiency of the PC methods, we applied a
dynamical strategy for determining the number of iterations in the successive steps

HY,({"’ - ng-‘)Hw < TOL = Ch*~!, (4.1)

where p is the order of the corrector method, and C is a parameter depending on the method
and on the problem (cf. {5,6,10]). Notice that by the criterion (4.2) the iteration error of the PC
method is of the same order in A as the underlying corrector. For PISRKN methods, in the first
integration step, we used the trivial predictor formula Y§°’ =e®yn+hc®y,.

4.1. Comparison with Parallel Methods

In this section, we report numerical results obtained by the best parallel methods available in
the literature, the PIRKN proposed in (7] and the PISRKN methods considered in this paper.
The absolute error obtained at the end of the integration interval is presented in the form 10~¢
(d may be interpreted as the number of correct decimal digits (NCD)). Furthermore, in the
tables of results, Nseq denotes the total number of sequential right-hand side evaluations, and
Ngteps denotes the total number of integration steps. The following three problems possess exact
solutions in closed form. Initial conditions are taken from the exact solutions.

4.1.1. Linear nonautonomous problem

As a first numerical test, we integrate the linear problem (cf. [5,12])

dzd);g) _ (2—(10(18)“*'3 —aozg)—"';) y(t), of(t) = max (2 cos’(t),sin’(t))

0<t<20,

(4.2)

116 N. H. Cong

Table 3. Values of NCD/Njeq for problem (4.3) obtained by various pt?-order parallel

PC methods.

pth-order PC methods p Nsteps = 80 Nsteps = 160 Nateps = 320 Ngteps = 640 Ngteps = 1280 C

PIRKN 4 4.0/237 5.3/477 6.5/958 7.7/1919 8.9/3836 10~}
PISRKN 4 55/161 7.1/321 8.1/641 9.3/1281 10.5/2561 10-!
PIRKN 6 7.4/320 9.2/640 11.0/1280 12.8/2559 14.6/5119 10-3
PISRKN 6 9.3/232 11.0/433 12.9/704 15.0/1282 16.9/2562 1073
PIRKN 8 11.0/399 13.4/799 15.8/1600 18.2/3198 20.6/6398 104
PISRKN 8 119/222 14.5/400 17.3/783 19.7/1410 23.2/2563 10—%
PIRKN 10 13.3/436 18.0/921 20.9/1881 23.8/3803 104
PISRKN 10 14.0/245 17.0/439 21.0/801 24.1/1497 10-4

with exact solution y(t) = (—sin(t),2sin(t))T, by various p*P-order PC methods. The results
listed in Table 3 clearly show that the PISRKN methods are by far superior to the PIRKN
methods of the same order.

4.1.2. Orbit problem

For the second numerical example, we consider the often-used orbit problem (or nonlinear
Fehlberg problem) (cf., e.g., [1,2,13,14])

dQ ¢ _4t2 __r2
;;g) = (2 _4:2) y(t), r(t) =4/ ¥i(t) + 430, \/gﬁtﬁ 10. (4.3)

r(t

The exact solution is given by y(t) = (cos(t?),sin(t?))T. The results are reported in Table 4.
Again the PISRKN methods are superior to the PIRKN methods of the same order.

Table 4. Values of NCD/Nseq for problem (4.4) obtained by various p*®-order parallel

PC methods.
pth_order PC methods p Nsteps = 200 Nateps = 400 Npteps = 800 Nateps = 1600 Nypeps = 3200 C
PIRKN 4 1.6/591 2.8/1197 4.0/2400 5.2/4800 6.4/9600 102
PISRKN 4 3.2/481 4.7/918 5.9/1693 7.0/3201 8.2/6401 102
PIRKN 6 4.0/775 5.8/1532 7.6/3096 9.4/6257 11.2/12648 108
PISRKN 6 6.8/526 8.0/1001 9.7/1887 11.5/3514 13.4/6553 103
PIRKN 8 6.6/1022 9.0/2032 11.5/4028 13.9/7966 16.3/15725 103
PISRKN 8 9.1/628 11.7/1094 14.5/2107 17.0/4076 19.4/7781 103
PIRKN 10 9.4/1234 12.4/2458 15.5/4893 18.5/9734 21.5/19332 10°
FISRKN 10 12.4/699 15.4/1244 18.7/2226 22.3/4295 103

4.1.3. Newton’s equations of motion problem

The third example is the two-body gravitational problem for Newton’s equation of motion
(see (15, p. 245]):

dyi(t) _ wn() dp(t) ya(t)

o e AN N 0 A tIS - (4.4)
yl(O) =1-g, yg(O) =0, yi(O) =0, yé(o) = 'i-:_-tg’

where () = \/¥2(t) + ¥3(¢)-

Runge-Kutte-Nystrom Methods 17

The solution components are y,(t) = cos(u) - €, y2(t) = /(1 + €){1 ~ €) sin{u), where u is the
solution of Kepler's equation ¢ = u ~ £sin{u) and ¢ denotes the eccentricity of the orbit. In this
example we set £ = 0.3. The results are listed in Table 5. In this example, we observe the same
increased efficiency of the PISRKN methods as in two previous examples.

Table 5. Values of NC D/ Nyeq for problem (4.5} obtained by various p*®-order parallel

PC methods

p*Poorder PC methods p Nateps = 100 Neteps = 200 Nyteps = 400 Nyteps = 800 Niteps = 1600 C

PIRKN 4 1.9/200 3.3/400 5.0/841 6.2/1995 7.3/4800 10!
PISRKN 4 3.0/200 4.6/400 7.0/801 8.2/1601 9.3/3201 10}
PIRKN 6 5.1/360 6.8/800 §.6/1600 10.4/3200 12.2/6400 10~}
PISRKN 6 66/246 81/443 10.3/809 12.2/1602 14.2/3202 10!
PIRKN 8 77/450 10.1/917 12.5/1934 14.9/4000 17.3/8000 10~2
PISRKN 8 98/278 12.2/524 14.5/1002 16.9/1871 19.3/3487 10~32
PIRKN 10 104/517 13.3/1050 16.2/2127 19.2/4306 22.2/8706 10~2
PISRKN 10 10.5/314 14.8/558 18.1/1054 22.0/2010 10-2

4.2. Comparison with Sequential Methods

In the section above the PISRKN methods were compared with PIRKN methods (the most
efficient parallel methods for nonstiff problems). In this section we will compare the PISRKN
methods with the sequential methods currently available.

We restricted our test to the comparison of our tenth-order PISRKN method with a few well-
known sequential codes for the orbit problem (4.4). We selected some embedded RKN pairs
presented in the form p(p + 1) or (p + 1)p constructed in [1,2,13,14] and the RKN code DOPRIN
taken from [9]. We reproduced the best results obtained by these sequential methods given in the
literature (cf., e.g., [7,14]) and added the results obtained by the tenth-order PISRKN method.
In spite of the fact the results of the sequential methods are obtained using a stepsize strategy,
whereas PISRKN method is applied with fixed stepsizes, it is the PISRKN method that is much
more efficient (see Table 6).

Table 6. Comparison with the sequential methods for problem (4.4).

Methods Niteps NCD Nyeq
11(10)-pair (from [14}) 919 207 15614
8(9)-pair (from [1]) 1452 135 15973
9(10)-pair (from [2)) 628 151 8793
3235 214 45201
11(12)-pair (from [13)) 876 203 17521
DOPRIN (from [9]) 1208 123 9665

4466 16.3 35729
16667 203 133337

PISRKN {in this paper) 200 124 699
400 154 1244
800 187 2226
1600 22.3 4295

5. CONCLUDING REMARKS

In this paper, we proposed a special class of s-stage SRKN methods of order s+ 1. The better
performance of these SRKN methods is demonstrated when they are used as corrector methods

118 N. H. CoNG

for generating PC methods for nonstiff problems. By three examples, we have shown that for a
given order p, the resulting PISRKN method is by far superior to the PIRKN method (about a
factor from 2 to 4). The price we have to pay is a larger number of processors to achieve the same
order of accuracy (nearly twice as many). However, comparison of numerical results obtained by
a pt"-order PISRKN and a p*"-order PIRKN method, both implemented on p/2 processors (the
optimal number of processors for a p*"-order PIRKN method), also reveals that the PISRKN
method is superior to the PIRKN method.

By comparing the tenth-order PISRKN method with high-order sequential method, we have
shown that the PISRKN methods are much more efficient.

REFERENCES

1. E. Fehlberg, Klassische Runge-Kutta-Nystrém Formeln mit Schrittweiten-Kontrolle fiir Differentialgleichun-
gen =’/ = f(t,z), Computing 10, 305-315 (1972).
2. E. Fehlberg, Eine Runge-Kutta-Nystrom Formel 9-ter Ordnung mit Schrittweitenkontrolle fiir Differential-
gleichungen z”’ = f(t,z), Z. Angew. Math. Mech. 81, 477-485 (1981).
3. E. Hairer, Méthodes de Nystrém pour ’équations différentielle y"/(t) = f(t,y), Numer. Math. 27, 283-300
(1982).
. E. Hairer, A one-step method of order 10 for y"" = f(z,y), IMA J. Numer. Anal. 2, 83-94 (1982).
5. N.h. Cong, Note on the performance of direct and indirect Runge-Kutta-Nystrom methods, J. Comp. Appl.
Math. 45, 347-355 (1993).

. N.h. Cong, Explicit parallel two-step Runge-Kutta-Nystrém methods, Computers Math. Applic. (to appear).

B.P. Sommeijer, Explicit, high-order Runge-Kutta-Nystrom methods for parallel computers, Appl. Numer.

Math. 18, 221-240 (1993).

8. P.J. van der Houwen, B.P. Sommeijer and N.h. Cong, Stability of collocation-based Runge-Kutta-Nystrém
methods, BIT 31, 469481 (1991).

9. E. Hairer, S.P. Ngrsett and G. Wanner, Solving Ordinary Differential Equations, 1. Nonstiff Problems,
Springer-Verlag, Berlin, (1987).

10. N.h. Cong, Parallel iteration of symmetric Runge-Kutta methods for nonstiff initial value problems, J. Comp.
Appl. Math. 51, 117-125 (1994).

11. P.J. van der Houwen and N.h. Cong, Parallel block predictor-corrector methods of Runge-Kutta type, Appl.
Numer. Math. 138, 109-123 (1993).

12. N.h. Cong, A-stable diagonally implicit Runge-Kutta-Nystrom methods for parallel computers, Numerical
Algorithms 4, 263-281 (1993),

13. S. Filippi and J. Grif, Eine Runge-Kutta-Nystrém Formelpaar der Ordnung 11(12) Differentialgleichungen
der Form 3’ = f(t,y), Computing 84, 271-282 (1985).

14. S. Filippi and J. Graf, New Runge-Kutta-Nystrém formula-pairs of order 8(7), 9(8) 10(9) and 11(10) for
differential equations of the form y" = f(t,y), J. Comp. Appl. Math. 14, 361~370 (1986).

15. L.F. Shampine and M.K. Gordon, Computer Solution of Ordinary Differential Equations, The Initial Value
Problem, W.H. Freeman and Company, San Francisco, (1975).

16. M. Abramowitz and [.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards
Applied Mathematics Series 55, Dover, New York, (1970).

17. E. Fehlberg, S. Filippi and J. Graf, Eine Runge-Kutta-Nystrém Formelpaar der Ordnung 10(11) fiir Differ-
entialgleichungen y”’ = f(t,y), Z. Angew. Math. Mech. 68, 265-270 (1986).

18. W. Glasmacher and D. Sommer, Implizite Runge-Kutta-Formeln, Westdeutscher Verlag, K6In, (1966).

19. N.h. Cong, Highly parallel predictor-corrector methods of Runge-Kutta-Nystrom type, (in preparation).

'y

No

Runge-Kutta-Nystrom Methods 119

APPENDIX

Here we give the paremeters (c, 4, b, d) in 24 decimal of the corrector RKN methods of fourth-
order, sixth-order, eighth-order and tenth-order based on ‘optimal’ collocation vectors defined in
Section 3.2. These parameters were computed on a 28-arithmetic computers.

Table A.1. Parameters (c, A, b,d) of the fourth-order corrector RKN method.

¢(1) = 1.057584600000000000000000E—01

¢(2) = 5.000000000000000000000000E—01

¢(3) = 8.942415400000000000000000E—01
a(1,1) = 7.193250169095325995341243E—-03
a(2,1) = 1.031090358897341291331342E—-01
a(3,1) = 2.119770209321705656042605E—01
a(l1,2) = —2.201506357139079048429876 E—03
a(2,2) = 2.447009762720224800931751E—-02
a(3,2) = 1.806636948295199084003982E—01

a(1,3) = 6.006821188295530530886328E—04

a(2,3) = —2.579133516936377142451729E~03

a(3,3) = 7.193250169095325995341243E—03
b(1) = 2.397280392370675089298293E—01
b(2) = 2.319202603392059946915134E—01
b(3) = 2.835170042372649637865737E—02
d(1) = 2.680797396607940053084866E—01
d(2) = 4.638405206784119893830267E—01
d(3) = 2.680797396607940053084866E~01

Table A.2. Parameters (c, A, b,d) of the eighth-order corrector RKN method.

c(1) = 2.204808000000000000000000E—02
¢(2) = 1.183611900000000000000000E 01
c(3) = 2.810735200000000000000000E~01
¢(4) = 5.000000000000000000000000E~01
e(5) = 7.189264800000000000000000E—01
c(6) = 8.816388100000000000000000E—01
c(7) = 9.770519200000000000000000E—~01
a(l,1) = 3.541933154986615908580242E— 04
a(2,1) = 5.529246407690738971594212E—03
a(3,1) = 1.513528009772205113189058E— 02
a(4,1) = 2.795283215021751479627000E—02
a(5,1) = 4.098536923927815079519936E~02
a(6, 1) = 5.050772079779702684826367E~05
a(7,1) = 5.614087446180754869545597E—02
a(l,2) = —1.427152046194791182509997E—04
a(2,2) = 1.707891780679761069393039E—03
a(3,2) = 2.109011441288196899556467E—02
a(4,2) = 4.996318779186110751051844E—02
a(5,2) = 7.783191058006123801491142E—02
a(6,2) = 9.912438771888066949387070E—02
a(7,2) = 1.114466916051240038024873E~01
a(1,3) = 8.094955794804809066925953E—05
a(2,3) = —3.226209812316969239644695E 04
a(3,3) = 3.676743716035802448431083E—03
a(4,3) = 4.175382270796465756927991E—02
a(5,3) = 8.585622858073934681127075E—02
a(6,3) = 1.173373854328658567115264E—01
a(7,3) = 1.361035096131359006634671E—01
a(l,4) = —4.778491171129404433958801E—05
a(2,4) = 1.395911461208244017116928E~04
a(3,4) = —5.624449129592406108507747E—04
a(4,4) = 6.070489013867087282635708E—03
a(5,4) = 5.016030393261981828585988E—02
a(6,4) = 8.856001646663785732646601E—02
a(7,4) = 1.104796612175156206645111E—01

a(1,5) = 3.126942733774384233966542E 05
a(2,5) = —8.043153980674912328959031E—05
a(3,5) = 2.506506789213120465785417E—~04
a(4,5) = —1.048966242944359813066190E—03
a(5,5) = 3.676743716035802448431083E—03
a(6,5) = 3.148960908962287414615932E—02
a(7,5) = 5.054761184192817014710453E—02
a(1,6) = —1.837286148408038975922562E—05
a(2,6) = 4.472358972535885599118372E—05
a(3,6) = —1.263652316005222084240929E—04
a(4,6) = 4.233557272834521915786853E—04
a(5,6) = —3.127390461158141897933397E—05
a(6,6) = 1.707891780679761069393040E—03
a(7,6) = 1.224268513283329443611598E—02
a(1,7) = 5.767864873600028482864183E—06
a(2,7) = —1.370575407018725143606739E—05
a(3,7) = 3.718306159382819680998980E—05
a(4,7) = ~1.147211482494595372165563E—04
a(5,7) = —5.164032152757493669315549E—05
a(6,7) = —8.442463737599559567915652E—05
a(7.7) = 3.541933154086615908580242E ~04
b(1) = 5.748526667698872342684159E—02
b(2) = 1.144439125282203012528527E~01
b(3) = 1.405588688707730223723914E—01
b(4) = 1.158442524759431999653734E—01
b(5) = 5.495329096895498760769919E~02
b(6) = 1.536424839906499061497320E—02
b(7) = 1.350160080054774759868477E—03
d(1) = 5.883542675704349818671006E—02
d(2) = 1.298081609272852918678259E—01
d(3) = 1.955121598397280099800906E—01
d(4) = 2.316885049518863999307469E—01
d(5) = 1.955121598397280099800906 E—~01
d(6) = 1.298081609272852918678259E 01
d(7) = 5.883542675704349818671006 E—02

120

N. H. Coxng

Table A 3. Parameters (¢, A, b, d) of the tenth-order corrector RKN method.

o{1) = 1.532451000000000000000000E — 02
c{2) = 7.956500000000000000000000E - 02
(3} = 1.903555300000000000000000E— 01
cl4) = 3 .382466500000000000000000E 01
o{5) = 5.000000000000000000000000E - 01
&(6) = 6.617533500000000000000000E 01
o7} = 8.096444700000000000000000E — 01
¢(8) = 9.204350000000000000000000E ~ 01
o(9) = 9.846754900000000000000000E - 01
a(1,1) = 1.601475897565237308644742E 04
al2, 1) = 2.486382917030823452822819E~ 03
a(3,1) = 6.87404572039480221 2048381 E- 03
a{4,1) = 1.264135385034151667873547E 02
a(5,1) = 19016962821 12353378775272E~02
a(6,1) = 2.535906250035105583073432E~ 02
al7,1) = 3.11764478893644206 7069945 E~ 02
a(8,1) = 3.551483704706959920795049E~02
a(9,1) = 3.80408008439675725 1923628 E ~02
a(1,2) = —7.072786167305523297453930E~05
a(2,2) = 7.964838042577941078882503E~04
a(3,2) = 9.603308808879063800577235E - 03
a{4,2) = 2.298239161311529524599555E—02
a(5,2) = 3.71590135022274281 1958828~ 02
a(6,2) = 5.147823935252965178043408E—02
a(7,2) = 6.449751421502533664588372E~02
a(8,2) = 7.432033437839941496264022E—02
a(9,2) = 7.998011378170742761703407E~02
a(1,3) = 4.786394757422258512379553E~05
a(2,3) = —1.7343103639202541 14335306 E~04
a(3,3) = 1.763143030701564087967157E—03
a(4,3) = 1.917669714332535010411394E 02
a(5,3) = 4.00187250299824381 1608397E—02
a(6,3) = 6.220467110439485846731309E—02
a(7,3) = 8.184959060673778311387388E 02
a(8,3) = 9.642068558874371471603542E~02
a(9,3) = 1.049400098225438647618789E~01
a(1,4) = —3.501005871452694333679985E~05
a(2.4) = 0.137856437248375184564131E 05
a(3,4) = —3.062553587907659113980981 E~04
a{4,4) = 2.703806284358016888223642E—03
a(5,4) = 2.556061115037281978761015E~02
a(6,4) = 5.160654626578425354470667E 02
a(7,4) = 7.490408539164461038094595E—02
a(8,4) = 9.264085824998741485457560E—02
a(9,4) = 1.028040819594296834288606 E~01
a(1,5) = 2.508461225500389018540020E 05
a(2,5) = —5.862225779151530198575607E ~05
a(3,5) = 1.422791629673137348712148E 04
a(4,5) = —4.028451654279644345416250E~04
a(5,5) = 2.495832678590789870112953E—03
a(6,5) = 2.587438604125602632035448E—02
al7,5) = 5.044478979870630706649982E—02
a(8,5) = 6.824208422386133482168438E~02
a(9,5) = 7.876271771330813016080123E—02

a(l,6) = —1.780067685072795180208326E~05
a(2,6) = 3 715852039344618351538906 05
a(3.6) = -7 711644186027908770464365E ~05
al4,6) = 1.491144787829555203163462E — 04
a(5,6) = ~1681047341278202245850008F~04
a{6,6) = 2 T03806284358016888223643E 03
a{7.6) = 2.321751468771282553286217TE~02
a(8,6) = 4.12376465069651 5439851550802
a(9,6) = 5.132044079056458641 203650E—02
a(l1,7) = 1.108785902903640172109336E~05
a{2,7) = -2.212787750012136523970112E—05
a{3,7) = 4.210227655932866657017992E 05
a4, 7) = —6.6538036142218841 75086736 E 05
al5,7) = 1498486489321089243211681 E—05
a{6,7) = ~3.595811463160270341258051E 04
a(7,7) = 1.763143030701564087967156 503
a(8,7) = 1.446189409967245622253788E 02
a(9,7) = 2.316929758091059649797794E—02
a(l,8) = —5.852542001807330962410302E~06
a(2,8) = 1.139613664490011802518314E—05
a(3,8) = —2.069935877663995913688510E~05
a(4,8) = 2.938501687852603871784536E—05
a(5,8) = 4.544471350170697280766453E—06
a{6,8) = 1.223077070119061430967624E~04
a{7,8) = —0.741585007347434901719141E 05
a(8,8) = 7.964838042577941078882565E~ 04
a{9,8) = 5.606300221181664870406897E~03
a(1,9) = 1.727434895380851181960374E—06
a(2,9) = —3.324158514885535438204993E 06
a(3,9) = 5.906060716062365305458302E~ 06
a(4,9) = —7.966167120227199810306597E~06
a(5,9) = —2.573883412562046275043545E~06
a(6,9) = —3.069080125939194977722945E 05
a(7,9) = 6.414130970977850285049937E—06
a(8,9) = -3 452928645688338183671997E~05
a{9,9) = 1.601475897565237308644713E~04
(1) = 3.864043470428443862110520E—02
8(2) = 8.134021616962112677465392E—~02
b(3) = 1.069532753662910882219313E—01
b{4) = 1.052594208016235689152302E~01
b{5) = 8.122623768436601391852500E~02
b(6) = 5.380198001462227089083982E—02
b{7) = 2.514578703611263377462762E~02
b{8) = 7.031277927866611930038891 E—03
b(9) = 6.013612952122469530479639E 04
d(1) = 3.924179599949668557415325E~02
d(2) = 8.837149409748773870469283E—02
d(3) = 1.320990624024037219965588E 01
d(4) = 1.590614098162458398060702E~01
d(5) = 1.624524753687320278370500E~01
d(6) = 1.590614098162458398060701 E—01
d(7) = 1.320990624024037219965589E—01
d(8) = 8.837149409748773870469283E—02
d(9) = 3.924179599949668557415327E~02

il

Runge-Kutta-Nystrém Methods

Table A.4. Parameters (c, A, b, d) of the sixth-order corrector RKN method.

(1) = 4.282436000000000000000000E—02
(2) = 2.175817100000000000000000E —01
¢(3) = 5.000000000000000000000000E—01
¢(4) = 7.824182900000000000000000E —01
¢(5) = 9.571756400000000000000000E—01
a(1,1) = 1.217324854314668862875581E—03
a(2,1) = 1.884237191394402003661308E—02
a(3,1) = 4.989776856773406065516176 K02
a(4,1) = 8.001402169931404156158724E ~02
a(5,1) = 9.909618830407916003572662E — 02
a(1,2) = —4.539652804281885870054783E—04
a(2,2) = 5.536940973523307750655806 E—03
a(3,2) = 6.576803070094104585154723E 02
a(4,2) = 1.351067996166308663641600E-01
a(5,2) = 1.762747633597403769676393E 01
a(1,3) = 2.374924730201506602393783E~04
a(2,3) = —9.875523239129909533746692E —04
a(3,3) = 1.055560637231852177293725E—02
a(4,3) = 8.552178426295008910005288E —02
a(5,3) = 1.402778606803148843539990E 01

a(1,4) = -1.217873863960348101558417E~04
a(2,4) = 3.906798571783529531297708E—04
a(3,4) = —1.590029178785210853967881E~03
a(4,4) = 5.536940973523307750655806E—03
a(5,4) = 1.122646570625570977975948E~02
a(1,5) = 3.789824419420387404637056E—05
a(2,5) = —1.115401574706397870239920E—04
a(3,5) = 3.686235377915825743216407E 04
a(4,5) = —9.035628915625477645592689E—05
a(5,5) = 1.217324854314668862875571E—03
b(1) = 1.036977628394374000771653E—01
b(2) = 1.866103573844775543383899E—01
b(3) = 1.531581693715075607415999E—01
b(4) = 5.189423762502504092735971E—02
b(5) = 4.639472779552443915485100E—03
d(1) = 1.083372356189898439926504E—01
d(2) = 2.385045950095025952657497E 01
d(3) = 3.063163387430151214831998E—01
d(4) = 2.385045950095025952657497E—01
d(5) = 1.083372356189898439926504E—01

CAMNA 31:2-1

